Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Bone Rep ; 21: 101757, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577251

RESUMO

Approximately half of bone fractures that do not heal properly (non-union) can be accounted to insufficient angiogenesis. The processes of angiogenesis and osteogenesis are spatiotemporally regulated in the complex process of fracture healing that requires a substantial amount of energy. It is thought that a metabolic coupling between angiogenesis and osteogenesis is essential for successful healing. However, how this coupling is achieved remains to be largely elucidated. Here, we will discuss the most recent evidence from literature pointing towards a metabolic coupling between angiogenesis and osteogenesis. We will describe the metabolic profiles of the cell types involved during fracture healing as well as secreted products in the bone microenvironment (such as lactate and nitric oxide) as possible key players in this metabolic crosstalk.

2.
Bone ; 181: 117043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341164

RESUMO

Bone formation and homeostasis are controlled by environmental factors and endocrine regulatory cues that initiate intracellular signaling pathways capable of modulating gene expression in the nucleus. Bone-related gene expression is controlled by nucleosome-based chromatin architecture that limits the accessibility of lineage-specific gene regulatory DNA sequences and sequence-specific transcription factors. From a developmental perspective, bone-specific gene expression must be suppressed during the early stages of embryogenesis to prevent the premature mineralization of skeletal elements during fetal growth in utero. Hence, bone formation is initially inhibited by gene suppressive epigenetic regulators, while other epigenetic regulators actively support osteoblast differentiation. Prominent epigenetic regulators that stimulate or attenuate osteogenesis include lysine methyl transferases (e.g., EZH2, SMYD2, SUV420H2), lysine deacetylases (e.g., HDAC1, HDAC3, HDAC4, HDAC7, SIRT1, SIRT3), arginine methyl transferases (e.g., PRMT1, PRMT4/CARM1, PRMT5), dioxygenases (e.g., TET2), bromodomain proteins (e.g., BRD2, BRD4) and chromodomain proteins (e.g., CBX1, CBX2, CBX5). This narrative review provides a broad overview of the covalent modifications of DNA and histone proteins that involve hundreds of enzymes that add, read, or delete these epigenetic modifications that are relevant for self-renewal and differentiation of mesenchymal stem cells, skeletal stem cells and osteoblasts during osteogenesis.


Assuntos
Osteogênese , Fatores de Transcrição , Osteogênese/genética , Fatores de Transcrição/metabolismo , Lisina/metabolismo , Proteínas Nucleares/genética , Diferenciação Celular/genética , Epigênese Genética , Osteoblastos/metabolismo , Transferases/genética , Transferases/metabolismo
3.
Bone ; 180: 116998, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38184100

RESUMO

Osteon morphology provides valuable information about the interplay between different processes involved in bone remodelling. The correct quantitative interpretation of these morphological features is challenging due to the complexity of interactions between osteoblast behaviour, and the evolving geometry of cortical pores during pore closing. We present a combined experimental and mathematical modelling study to provide insights into bone formation mechanisms during cortical bone remodelling based on histological cross-sections of quiescent human osteons and hypothesis-testing analyses. We introduce wall thickness asymmetry as a measure of the local asymmetry of bone formation within an osteon and examine the frequency distribution of wall thickness asymmetry in cortical osteons from human iliac crest bone samples from women 16-78 years old. Our measurements show that most osteons possess some degree of asymmetry, and that the average degree of osteon asymmetry in cortical bone evolves with age. We then propose a comprehensive mathematical model of cortical pore filling that includes osteoblast secretory activity, osteoblast elimination, osteoblast embedment as osteocytes, and osteoblast crowding and redistribution along the bone surface. The mathematical model is first calibrated to symmetric osteon data, and then used to test three mechanisms of asymmetric wall formation against osteon data: (i) delays in the onset of infilling around the cement line; (ii) heterogeneous osteoblastogenesis around the bone perimeter; and (iii) heterogeneous osteoblast secretory rate around the bone perimeter. Our results suggest that wall thickness asymmetry due to off-centred Haversian pores within osteons, and that nonuniform lamellar thicknesses within osteons are important morphological features that can indicate the prevalence of specific asymmetry-generating mechanisms. This has significant implications for the study of disruptions of bone formation as it could indicate what biological bone formation processes may become disrupted with age or disease.


Assuntos
Ósteon , Osteoblastos , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Ósteon/anatomia & histologia , Osso e Ossos , Osteócitos , Osso Cortical
4.
Eur J Endocrinol ; 189(4): 448-459, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796032

RESUMO

Fibroblast growth factor 23 (FGF23) is produced and secreted by osteocytes and is essential for maintaining phosphate homeostasis. One of the main regulators of FGF23, 1,25-dihydroxyvitamin D (1,25(OH)2D3), is primarily synthesized in the kidney from 25-hydroxyvitamin D (25(OH)D) by 1α-hydroxylase (encoded by CYP27B1). Hitherto, it is unclear whether osteocytes can convert 25(OH)D and thereby allow for 1,25(OH)2D3 to induce FGF23 production and secretion locally. Here, we differentiated MC3T3-E1 cells toward osteocyte-like cells expressing and secreting FGF23. Treatment with 10-6 M 25(OH)D resulted in conversion of 25(OH)D to 150 pmol/L 1,25(OH)2D3 and increased FGF23 expression and secretion, but the converted amount of 1,25(OH)2D3 was insufficient to trigger an FGF23 response, so the effect on FGF23 was most likely directly caused by 25(OH)D. Interestingly, combining phosphate with 25(OH)D resulted in a synergistic increase in FGF23 expression and secretion, likely due to activation of additional signaling pathways by phosphate. Blockage of the vitamin D receptor (VDR) only partially abolished the effects of 25(OH)D or 25(OH)D combined with phosphate on Fgf23, while completely inhibiting the upregulation of cytochrome P450 family 24 subfamily A member 1 (Cyp24a1), encoding for 24-hydroxylase. RNA sequencing and in silico analyses showed that this could potentially be mediated by the nuclear receptors Retinoic Acid Receptor ß (RARB) and Estrogen Receptor 2 (ESR2). Taken together, we demonstrate that osteocytes are able to convert 25(OH)D to 1,25(OH)2D3, but this is insufficient for FGF23 activation, implicating a direct effect of 25(OH)D in the regulation of FGF23, which occurs at least partially independent from its cognate VDR. Moreover, phosphate and 25(OH)D synergistically increase expression and secretion of FGF23, which warrants investigating consequences in patients receiving a combination of vitamin D analogues and phosphate supplements. These observations help us to further understand the complex relations between phosphate, vitamin D, and FGF23.


Assuntos
Calcitriol , Osteócitos , Humanos , Calcifediol , Calcitriol/farmacologia , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Oxigenases de Função Mista , Osteócitos/metabolismo , Fosfatos , Receptores de Calcitriol/genética , Vitamina D/farmacologia , Animais , Camundongos
5.
Cell Mol Life Sci ; 80(9): 277, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668682

RESUMO

BACKGROUND: The tightly controlled balance between osteogenic and adipogenic differentiation of human bone marrow-derived stromal cells (BMSCs) is critical to maintain bone homeostasis. Age-related osteoporosis is characterized by low bone mass with excessive infiltration of adipose tissue in the bone marrow compartment. The shift of BMSC differentiation from osteoblasts to adipocytes could result in bone loss and adiposity. METHODS: TNS3 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses. Lentiviral-mediated knockdown or overexpression of TNS3 was used to assess its function. The organization of cytoskeleton was examined by immunofluorescent staining at multiple time points. The role of TNS3 and its domain function in osteogenic differentiation were evaluated by ALP activity, calcium assay, and Alizarin Red S staining. The expression of Rho-GTP was determined using the RhoA pull-down activation assay. RESULTS: Loss of TNS3 impaired osteogenic differentiation of BMSCs but promoted adipogenic differentiation. Conversely, TNS3 overexpression hampered adipogenesis while enhancing osteogenesis. The expression level of TNS3 determined cell shape and cytoskeletal reorganization during osteogenic differentiation. TNS3 truncation experiments revealed that for optimal osteogenesis to occur, all domains proved essential. Pull-down and immunocytochemical experiments suggested that TNS3 mediates osteogenic differentiation through RhoA. CONCLUSIONS: Here, we identify TNS3 to be involved in BMSC fate decision. Our study links the domain structure in TNS3 to RhoA activity via actin dynamics and implicates an important role for TNS3 in regulating osteogenesis and adipogenesis from BMSCs. Furthermore, it supports the critical involvement of cytoskeletal reorganization in BMSC differentiation.


Assuntos
Adipogenia , Osteogênese , Tensinas , Humanos , Actinas , Adipogenia/genética , Diferenciação Celular , Osteogênese/genética , Tensinas/genética
6.
Bone Rep ; 19: 101704, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37593409

RESUMO

Osteogenic differentiation of mesenchymal cells is controlled by epigenetic enzymes that regulate post-translational modifications of histones. Compared to acetyl or methyltransferases, the physiological functions of protein arginine methyltransferases (PRMTs) in osteoblast differentiation remain minimally understood. Therefore, we surveyed the expression and function of all nine mammalian PRMT members during osteoblast differentiation. RNA-seq gene expression profiling shows that Prmt1, Prmt4/Carm1 and Prmt5 represent the most prominently expressed PRMT subtypes in mouse calvarial bone and MC3T3 osteoblasts as well as human musculoskeletal tissues and mesenchymal stromal cells (MSCs). Based on effects of siRNA depletion, it appears that PRMT members have different functional effects: (i) loss of Prmt1 stimulates and (ii) loss of Prmt5 decreases calcium deposition of mouse MC3T3 osteoblasts, while (iii) loss of Carm1 is inconsequential for calcium deposition. Decreased Prmt5 suppresses expression of multiple genes involved in mineralization (e.g., Alpl, Ibsp, Phospho1) consistent with a positive role in osteogenesis. Depletion of Prmt1, Carm1 and Prmt5 has intricate but modest time-dependent effects on the expression of a panel of osteoblast differentiation and proliferation markers but does not change mRNA levels for select epigenetic regulators (e.g., Ezh1, Ezh2, Brd2 and Brd4). Treatment with the Class I PRMT inhibitor GSK715 enhances extracellular matrix mineralization of MC3T3 cells, while blocking formation of H3R17me2a but not H4R3me2a marks. In sum, Prmt1, Carm1 and Prmt5 have distinct biological roles during osteoblast differentiation, and different types histone H3 and H4 arginine methylation may contribute to the chromatin landscape during osteoblast differentiation.

7.
Front Endocrinol (Lausanne) ; 14: 1137573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455927

RESUMO

Bi-allelic variants in ASCC1 cause the ultrarare bone fragility disorder "spinal muscular atrophy with congenital bone fractures-2" (SMABF2). However, the mechanism by which ASCC1 dysfunction leads to this musculoskeletal condition and the nature of the associated bone defect are poorly understood. By exome sequencing, we identified a novel homozygous deletion in ASCC1 in a female infant. She was born with severe muscular hypotonia, inability to breathe and swallow, and virtual absence of spontaneous movements; showed progressive brain atrophy, gracile long bones, very slender ribs, and a femur fracture; and died from respiratory failure aged 3 months. A transiliac bone sample taken postmortem revealed a distinct microstructural bone phenotype with low trabecular bone volume, low bone remodeling, disordered collagen organization, and an abnormally high bone marrow adiposity. Proteomics, RNA sequencing, and qPCR in patient-derived skin fibroblasts confirmed that ASCC1 was hardly expressed on protein and RNA levels compared with healthy controls. Furthermore, we demonstrate that mutated ASCC1 is associated with a downregulation of RUNX2, the master regulator of osteoblastogenesis, and SERPINF1, which is involved in osteoblast and adipocyte differentiation. It also exerts an inhibitory effect on TGF-ß/SMAD signaling, which is important for bone development. Additionally, knockdown of ASCC1 in human mesenchymal stromal cells (hMSCs) suppressed their differentiation capacity into osteoblasts while increasing their differentiation into adipocytes. This resulted in reduced mineralization and elevated formation of lipid droplets. These findings shed light onto the pathophysiologic mechanisms underlying SMABF2 and assign a new biological role to ASCC1 acting as an important pro-osteoblastogenic and anti-adipogenic regulator.


Assuntos
Adipogenia , Proteínas , Lactente , Humanos , Feminino , Homozigoto , Deleção de Sequência , Diferenciação Celular , Proteínas/genética , Proteínas de Transporte/genética
9.
Stem Cell Res Ther ; 14(1): 126, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170285

RESUMO

BACKGROUND: Recent evidence suggests that accumulation of marrow adipose tissue induced by aberrant lineage allocation of bone marrow-derived mesenchymal stromal cells (BMSCs) contributes to the pathophysiologic processes of osteoporosis. Although master regulators of lineage commitment have been well documented, molecular switches between osteogenesis and adipogenesis are largely unknown. METHODS: HSPB7 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses. Lentiviral-mediated knockdown or overexpression of HSPB7 and its deletion constructs were used to assess its function. The organization of cytoskeleton was examined by immunofluorescent staining. ALP activity, calcium assay, Alizarin Red S staining and Oil Red O staining were performed in vitro during osteoblast or adipocyte differentiation. SB431542 and Activin A antibody were used to identify the mechanism of Activin A in the regulation of osteogenic differentiation in BMSCs. RESULTS: In this study, we identified HSPB7 capable of oppositely regulating osteogenic and adipogenic differentiation of BMSCs. HSPB7 silencing promoted adipogenesis while reducing osteogenic differentiation and mineralization. Conversely, overexpression of HSPB7 strongly enhanced osteogenesis, but no effect was observed on adipogenic differentiation. Deletion of the N-terminal or C-terminal domain of HSPB7 led to decreased osteoblastic potency and mineralization. Mechanistically, our data showed that Activin A is a downstream target participating in HSPB7 knockdown-mediated osteogenic inhibition. CONCLUSIONS: Our findings suggest that HSPB7 plays a positive role in driving osteoblastic differentiation, and with the capability in maintaining the osteo-adipogenesis balance. It holds great promise as a potential therapeutic target in the treatment of bone metabolic diseases.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Osteogênese , Proteínas de Choque Térmico HSP27/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas
10.
Sci Rep ; 13(1): 8310, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221192

RESUMO

Sex differences in serum phosphate and calcium have been reported but the exact nature and underlying regulatory mechanisms remain unclear. We aimed to compare calcium and phosphate concentrations between sexes, and explore potential covariates to elucidate underlying mechanisms of sex differences in a prospective, population-based cohort study. Pooled data of subjects > 45 years from three independent cohorts of the Rotterdam Study (RS) were used: RS-I-3 (n = 3623), RS-II-1 (n = 2394), RS-III-1 (n = 3241), with separate analyses from an additional time point of the first cohort RS-I-1 (n = 2688). Compared to men, women had significantly higher total serum calcium and phosphate concentrations which was not explained by BMI, kidney function nor smoking. Adjustment for serum estradiol diminished sex differences in serum calcium while adjustment for serum testosterone diminished sex differences in serum phosphate. Adjustment for vitamin D and alkaline phosphatase did not change the association between sex and calcium or phosphate in RS-I-1. In the sex-combined group, both serum calcium and phosphate decreased with age with a significant interaction for sex differences for serum calcium but not phosphate. In sex-stratified analyses, serum estradiol but not testosterone was inversely associated with serum calcium in both sexes. Serum estradiol was inversely associated with serum phosphate in both sexes to a similar degree, while serum testosterone was inversely associated with serum phosphate in both sexes with an apparent stronger effect in men than in women. Premenopausal women had lower serum phosphate compared to postmenopausal women. Serum testosterone was inversely associated with serum phosphate in postmenopausal women only. In conclusion, women > 45 years have higher serum calcium and phosphate concentrations compared to men of similar age, not explained by vitamin D or alkaline phosphatase concentrations. Serum estradiol but not testosterone was inversely associated with serum calcium while serum testosterone was inversely associated with serum phosphate in both sexes. Serum testosterone may in part explain sex differences in serum phosphate while estradiol could partly explain sex differences in serum calcium.


Assuntos
Cálcio , Caracteres Sexuais , Feminino , Humanos , Masculino , Fosfatos , Fosfatase Alcalina , Estudos de Coortes , Estudos Prospectivos , Cálcio da Dieta , Vitaminas , Vitamina D , Corantes , Estradiol , Testosterona
11.
J Clin Endocrinol Metab ; 108(9): e754-e768, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36916904

RESUMO

CONTEXT: Kenny-Caffey syndrome (KCS) is a rare hereditary disorder characterized by short stature, hypoparathyroidism, and electrolyte disturbances. KCS1 and KCS2 are caused by pathogenic variants in TBCE and FAM111A, respectively. Clinically the phenotypes are difficult to distinguish. OBJECTIVE: The objective was to determine and expand the phenotypic spectrum of KCS1 and KCS2 in order to anticipate complications that may arise in these disorders. METHODS: We clinically and genetically analyzed 10 KCS2 patients from 7 families. Because we found unusual phenotypes in our cohort, we performed a systematic review of genetically confirmed KCS cases using PubMed and Scopus. Evaluation by 3 researchers led to the inclusion of 26 papers for KCS1 and 16 for KCS2, totaling 205 patients. Data were extracted following the Cochrane guidelines and assessed by 2 independent researchers. RESULTS: Several patients in our KCS2 cohort presented with intellectual disability (3/10) and chronic kidney disease (6/10), which are not considered common findings in KCS2. Systematic review of all reported KCS cases showed that the phenotypes of KCS1 and KCS2 overlap for postnatal growth retardation (KCS1: 52/52, KCS2: 23/23), low parathyroid hormone levels (121/121, 16/20), electrolyte disturbances (139/139, 24/27), dental abnormalities (47/50, 15/16), ocular abnormalities (57/60, 22/23), and seizures/spasms (103/115, 13/16). Symptoms more prevalent in KCS1 included intellectual disability (74/80, 5/24), whereas in KCS2 bone cortical thickening (1/18, 16/20) and medullary stenosis (7/46, 27/28) were more common. CONCLUSION: Our case series established chronic kidney disease as a new feature of KCS2. In the literature, we found substantial overlap in the phenotypic spectra of KCS1 and KCS2, but identified intellectual disability and the abnormal bone phenotype as the most distinguishing features.


Assuntos
Hiperostose Cortical Congênita , Hipoparatireoidismo , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Hiperostose Cortical Congênita/genética , Fenótipo , Eletrólitos , Hipoparatireoidismo/genética
13.
J Cell Physiol ; 238(2): 379-392, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36538650

RESUMO

Arboviruses target bone forming osteoblasts and perturb bone remodeling via paracrine factors. We previously reported that Zika virus (ZIKV) infection of early-stage human mesenchymal stromal cells (MSCs) inhibited the osteogenic lineage commitment of MSCs. To understand the physiological interplay between bone development and ZIKV pathogenesis, we employed a primary in vitro model to examine the biological responses of MSCs to ZIKV infection at different stages of osteogenesis. Precommitted MSCs were infected at the late stage of osteogenic stimulation (Day 7) with ZIKV (multiplicity of infection of 5). We observe that MSCs infected at the late stage of differentiation are highly susceptible to ZIKV infection similar to previous observations with early stage infected MSCs (Day 0). However, in contrast to ZIKV infection at the early stage of differentiation, infection at a later stage significantly elevates the key osteogenic markers and calcium content. Comparative RNA sequencing (RNA-seq) of early and late stage infected MSCs reveals that ZIKV infection alters the mRNA transcriptome during osteogenic induction of MSCs (1251 genes). ZIKV infection provokes a robust antiviral response at both stages of osteogenic differentiation as reflected by the upregulation of interferon responsive genes (n > 140). ZIKV infection enhances the expression of immune-related genes in early stage MSCs while increasing cell cycle genes in late stage MSCs. Remarkably, ZIKA infection in early stage MSCs also activates lipid metabolism-related pathways. In conclusion, ZIKV infection has differentiation stage-dependent effects on MSCs and this mechanistic understanding may permit the development of new therapeutic or preventative measures for bone-related effects of ZIKV infection.


Assuntos
Células-Tronco Mesenquimais , Infecção por Zika virus , Zika virus , Humanos , Osteogênese , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas
14.
BMJ Open ; 12(11): e064779, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36375984

RESUMO

INTRODUCTION: The incidence of degenerative disorders, including osteoarthritis (OA), increases rapidly in women after menopause. However, the influence of the menopause is still insufficiently investigated due to the slowness of menopausal transition. In this study, a novel human model is used in which it is expected that menopausal-related changes will occur faster. This is the Females discontinuing Oral Contraceptives Use at Menopausal age model. The ultimate aim is to link these changes to OA and other degenerative disorders, including cardiovascular diseases, diabetes, osteoporosis and tendinopathies. METHODS AND ANALYSIS: This is a pilot observational prospective cohort study with 2 years of follow-up. Fifty women aged 50-60 who use oral contraceptive (OC) and have the intention to stop are included. Measurements are performed once before stopping OC, and four times thereafter at 6 weeks, 6 months, 1 year and 2 years. At every time point, a questionnaire is filled in and a sample of blood is drawn. At the first and final time points, a physical examination, hand radiographs and a MRI scan of one knee are performed. The primary OA outcome is progression of the MRI Osteoarthritis Knee Score. Secondary OA outcomes are the development of clinical knee and hand OA, development of knee OA according to the MRI definition, and progression of radiographic features for hand OA. Principal component analysis will be used to assess which changes occur after stopping OC. Univariate and multivariate generalised estimating equation models will be used to test for associations between these components and OA. ETHICS AND DISSEMINATION: The study has been approved by the Medical Ethics Committee of the Erasmus MC University Medical Center Rotterdam (MEC-2019-0592). All participants must give informed consent before data collection. Results will be disseminated in national and international journals. TRIAL REGISTRATION NUMBER: NL70796.078.19.


Assuntos
Osteoartrite do Joelho , Feminino , Humanos , Articulação do Joelho , Menopausa , Estudos Observacionais como Assunto , Osteoartrite do Joelho/diagnóstico por imagem , Estudos Prospectivos , Radiografia , Pessoa de Meia-Idade
15.
Mater Today Bio ; 16: 100448, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36238966

RESUMO

Black Ti (bTi) surfaces comprising high aspect ratio nanopillars exhibit a rare combination of bactericidal and osteogenic properties, framing them as cell-instructive meta-biomaterials. Despite the existing data indicating that bTi surfaces induce osteogenic differentiation in cells, the mechanisms by which this response is regulated are not fully understood. Here, we hypothesized that high aspect ratio bTi nanopillars regulate cell adhesion, contractility, and nuclear translocation of transcriptional factors, thereby inducing an osteogenic response in the cells. Upon the observation of significant changes in the morphological characteristics, nuclear localization of Yes-associated protein (YAP), and Runt-related transcription factor 2 (Runx2) expression in the human bone marrow-derived mesenchymal stem cells (hMSCs), we inhibited focal adhesion kinase (FAK), Rho-associated protein kinase (ROCK), and YAP in separate experiments to elucidate their effects on the subsequent expression of Runx2. Our findings indicated that the increased expression of Runx2 in the cells residing on the bTi nanopillars compared to the flat Ti is highly dependent on the activity of FAK and ROCK. A mechanotransduction pathway is then postulated in which the FAK-dependent adhesion of cells to the extreme topography of the surface is in close relation with ROCK to increase the endogenous forces within the cells, eventually determining the cell shape and area. The nuclear translocation of YAP may also enhance in response to the changes in cell shape and area, resulting in the translation of mechanical stimuli to biochemical factors such as Runx2.

16.
Endocrinology ; 163(11)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36155779

RESUMO

Ovariectomy-induced osteoporosis in mice results from an abrupt loss of ovarian sex steroids. Anti-Müllerian hormone knockout (AMHKO) mice show a gradual but accelerated ovarian aging, and therefore may better resemble osteoporosis following natural menopause. To study the impact of AMH signaling deficiency on bone, we compared trabecular and cortical bone parameters in 2-, 4-, 10-, and 16-month-old male and female wild-type (WT), AMHKO, and AMH type II receptor knockout (MRKI) mice using micro computed tomography (microCT). Goldner's staining was performed to confirm the observed bone phenotype. Both male and female AMHKO and MRKI mice showed age-dependent loss of trabecular bone (P < 0.001). However, reproductive-aged female AMHKO and MRKI mice had higher BV/TV compared with WT (P < 0.001), coinciding with increased growing follicle numbers (P < 0.05) and increased estrus inhibin B levels (AMHKO: P < 0.001; MRKI: P < 0.05) but normal inhibin A, estrogen, and progesterone levels. In aged female AMHKO and MRKI mice BV/TV did not differ from WT mice due to greater trabecular bone loss between 10 and 16 months compared with WT mice. At these ages, AMHKO and MRKI mice had reduced growing follicle numbers (P < 0.05) and reduced inhibin B levels (P < 0.001). At age 10 months, female MRKI mice had increased cortical bone parameters compared with WT mice (P < 0.01). Bone parameters of male AMHKO and MRKI mice did not differ from male WT mice. In conclusion, AMH signaling deficiency results in a sex- and age-dependent effect on predominantly trabecular bone. Our results further suggest that reproductive hormones beyond estrogen may contribute to bone homeostasis.


Assuntos
Hormônio Antimülleriano , Osteoporose , Animais , Hormônio Antimülleriano/genética , Osso Esponjoso/diagnóstico por imagem , Estrogênios , Feminino , Masculino , Camundongos , Camundongos Knockout , Osteoporose/genética , Progesterona , Microtomografia por Raio-X
17.
Gene ; 844: 146809, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35973571

RESUMO

The aim of this study was to identify the genetic basis of two female siblings - born to consanguineous Sudanese parents - diagnosed clinically as having the rare condition of 25-hydroxylase deficiency (vitamin D-dependent rickets type 1B). The initial diagnosis was established based on clinical data, laboratory and radiological findings retrospectively. Primers for all exons (5) of human CYP2R1 (NM_024514) were generated followed by Sanger sequencing on exons 1-5 for both girls and their parents. Homozygosity for a point mutation (c.85C > T) was detected, leading to a nonsynonymous variant at position 29 in exon 1, resulting in a premature stop codon (p.Q29X). This is a previously unknown variant that leads to a severely truncated protein and predicted to be among the 0.1 % most deleterious genomic variants(CADD score 36). To our knowledge, this family represents the first case series from Sudan with a confirmed CYP2R1 gene mutation and the 6th world-wide. With the lack of genetic facilities, diagnosis should be suspected by the persistently low 25 hydroxyvitamin D level in spite of proper treatment and after ruling out liver disease and malabsorption. Patients in this case series showed healing of rickets when treated with high doses of 1,25-dihydroxyvitamin D3 (1,25(OH)D3; calcitriol) and oral calcium.


Assuntos
Raquitismo , Calcitriol , Colestanotriol 26-Mono-Oxigenase/genética , Colestanotriol 26-Mono-Oxigenase/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Família 2 do Citocromo P450/genética , Feminino , Humanos , Biologia Molecular , Mutação , Receptores de Calcitriol/genética , Estudos Retrospectivos , Raquitismo/tratamento farmacológico , Raquitismo/genética
18.
JBMR Plus ; 6(8): e10659, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991532

RESUMO

Atypical femur fractures (AFFs) are rare complications of anti-resorptive therapy. Devastating to the affected individual, they pose a public health concern because of reduced uptake of an effective treatment for osteoporosis due to patient concern. The risk of AFF is increased sixfold to sevenfold in patients of Asian ethnicity compared with Europeans. Genetic factors may underlie the AFF phenotype. Given the rarity of AFFs, studying familial AFF cases is valuable in providing insights into any genetic predisposition. We present two Singaporean families, one comprising a mother (1-a) and a daughter (1-b), and the other comprising two sisters (2-a and 2-b). All four cases presented with bisphosphonate-associated AFF. Whole-exome sequencing (WES) was performed on 1-b, 2-a, and 2-b. DNA for 1-a was not available. Variants were examined using a candidate gene approach comprising a list of genes previously associated with AFF in the literature, as well as using unbiased filtering based on dominant and/or recessive inheritance patterns. Using a candidate gene approach, rare variants shared between all three cases were not identified. A rare variant in TMEM25, shared by the two sisters (2-a and 2-b), was identified. A rare heterozygous PLOD2 variant was present in the daughter case with AFF (1-b), but not in the sisters. A list of potential genetic variants for AFF was identified after variant filtering and annotation analysis of the two sisters (2-a and 2-b), including a Gly35Arg variant in TRAF4, a gene required for normal skeletal development. Although the findings from this genetic analysis are inconclusive, a familial aggregation of AFFs is suggestive of a genetic component in AFF pathogenesis. We provide a comprehensive list of rare variants identified in these AFF familial cases to aid future genetic studies. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

19.
Acta Biomater ; 151: 346-359, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995408

RESUMO

A functional vascular system is a prerequisite for bone repair as disturbed angiogenesis often causes non-union. Paracrine factors released from human bone marrow derived mesenchymal stromal cells (BMSCs) have angiogenic effects on endothelial cells. However, whether these paracrine factors participate in blood flow dynamics within bone capillaries remains poorly understood. Here, we used two different microfluidic designs to investigate critical steps during angiogenesis and found pronounced effects of endothelial cell proliferation as well as chemotactic and mechanotactic migration induced by BMSC conditioned medium (CM). The application of BMSC-CM in dynamic cultures demonstrates that bioactive factors in combination with fluidic flow-induced biomechanical signals significantly enhanced endothelial cell migration. Transcriptional analyses of endothelial cells demonstrate the induction of a unique gene expression profile related to tricarboxylic acid cycle and energy metabolism by the combination of BMSC-CM factors and shear stress, which opens an interesting avenue to explore during fracture healing. Our results stress the importance of in vivo - like microenvironments simultaneously including biochemical, biomechanical and oxygen levels when investigating key events during vessel repair. STATEMENT OF SIGNIFICANCE: Our results demonstrate the importance of recapitulating in vivo - like microenvironments when investigating key events during vessel repair. Endothelial cells exhibit enhanced angiogenesis characteristics when simultaneous exposing them to hMSC-CM, mechanical forces and biochemical signals simultaneously. The improved angiogenesis may not only result from the direct effect of growth factors, but also by reprogramming of endothelial cell metabolism. Moreover, with this model we demonstrated a synergistic impact of mechanical forces and biochemical factors on endothelial cell behavior and the expression of genes involved in the TCA cycle and energy metabolism, which opens an interesting new avenue to stimulate angiogenesis during fracture healing.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Humanos , Microfluídica , Neovascularização Fisiológica , Oxigênio/farmacologia
20.
J Am Heart Assoc ; 11(15): e023024, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35904204

RESUMO

Background Hyperphosphatemia has been associated with coronary artery calcification (CAC) mostly in chronic kidney disease, but the association between phosphate levels within the normal phosphate range and CAC is unclear. Our objectives were to evaluate associations between phosphate levels and CAC among men and women from the general population and assess causality through Mendelian randomization. Methods and Results CAC, measured by electron-beam computed tomography, and serum phosphate levels were assessed in 1889 individuals from the RS (Rotterdam Study). Phenotypic associations were tested through linear models adjusted for age, body mass index, blood pressure, smoking, prevalent cardiovascular disease and diabetes, 25-hydroxyvitamin D, total calcium, C-reactive protein, glucose, and total cholesterol : high-density lipoprotein cholesterol ratio. Mendelian randomization was implemented through an allele score including 8 phosphate-related single-nucleotide polymorphisms. In phenotypic analyses, serum phosphate (per 1 SD) was associated with CAC with evidence for sex interaction (Pinteraction=0.003) (men ß, 0.44 [95% CI, 0.30-0.59]; P=3×10-9; n=878; women ß, 0.24 [95% CI, 0.08-0.40]; P=0.003; n=1011). Exclusion of hyperphosphatemia, chronic kidney disease (estimated glomerular filtration rate <60 mL/min per 1.73 m2) and prevalent cardiovascular disease yielded similar results. In Mendelian randomization analyses, instrumented phosphate was associated with CAC (total population ß, 0.93 [95% CI: 0.07-1.79]; P=0.034; n=1693), even after exclusion of hyperphosphatemia, chronic kidney disease and prevalent cardiovascular disease (total population ß, 1.23 [95% CI, 0.17-2.28]; P=0.023; n=1224). Conclusions Serum phosphate was associated with CAC in the general population with stronger effects in men. Mendelian randomization findings support a causal relation, also for serum phosphate and CAC in subjects without hyperphosphatemia, chronic kidney disease, and cardiovascular disease. Further research into underlying mechanisms of this association and sex differences is needed.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Hiperfosfatemia , Insuficiência Renal Crônica , Calcificação Vascular , Doenças Cardiovasculares/complicações , Colesterol , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Feminino , Humanos , Hiperfosfatemia/complicações , Hiperfosfatemia/epidemiologia , Hiperfosfatemia/genética , Masculino , Fosfatos , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Fatores de Risco , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/epidemiologia , Calcificação Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...